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JUMPING ONTO
THE AI WAGON 
What is the common thread between children 
in a playpen, trainees on their first day at work 
and a clueless person at a bank kiosk? It may not 
be obvious at first but their circumstances are 
remarkably similar. Unaware, afraid to ask and 
eager to learn, all three scenarios are perfect 
examples of how cognitive thinking helps us all 
grasp an idea, learn through observation and 
emulate it in our own ways. Cognitive thinking 
is the exact theory that artificial intelligence (AI) 
is based on. No, AI is not a new mantra or trend. 
After all, it has been around for the last 50 years 
or so, but never has it been as acclaimed as it has 
been since the last 2 years. With the increased 
investments in infrastructure and automation, 
everyone is realising that the AI band wagon has 
much more to offer than big data and analytics. 

Some frequently asked questions include:

•     Based on a set of steps executed by users, can machine learning algorithms 	
         monitor and arrive at patterns? While these steps are very different                 	
        between users, will they have the same outcomes?
•     Is process reengineering a mandatory precursor to automation?  
        How can we derive insights faster or more efficiently?
•     Can we unlock hidden correlations between data elements without 		
        specifically querying for it?
•     Is there a method or approach to automatically read and infer the context 	
        with a machine?
•     Can we combine one or a set of algorithms to create a net that will 		
        orchestrate and form a decision matrix based on the cognitive ability 		
        gained by the very influx of data?
•     Will these algorithms predict future patterns based on the historic trend of 	
        data and take actions proactively (self-heal)?
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Today we are using cognitive thinking to 
help bots  read, learn, contextualize , infer 
and automate front-, middle- and back office 
processes across industries. Learning through 
cognitive thinking is quickly becoming the 
preferred way to shape organizations, industries 
and customer experiences. With endless 
opportunities in real-life business applications, 
AI is the inevitable omnipresent, bursting  
forth with promises of the next wave in 
technology innovation. 
However, as leaders look to get their questions 
answered and prepare a roadmap to integrate 
AI in their existing business processes, they are 
keen to understand how these cognitive skills 
can be leveraged for real world enterprises
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DEMYSTIFYING DUALITY AND
SELF-SIMILARITY OF FRACTALS  
Most cognitive computing and machine learning 
solutions use neural science as a foundation.  
Neural science is based on the premise that each 
neuron carries identical information. Recent studies 
show that fractals hold great promise when it comes 
to cognitive learning. Fractal science is based on the 
premise that networks of neurons carry similar but 
not identical signals about patterns, while neural 
networks read absolute data.

The first assumption suggests that in various learning 
tasks the dataset (the input from which we wish 
to learn) contains fractal characteristics. Broadly 
speaking, there are details at all scales. When you 
zoom in, even slightly,  the data reveals a non-smooth 
structure. This lack of smoothness can be seen 
naturally in phenomena such as clouds, coastlines, 
mountain ranges, and the crests of waves. 

If this detail is to be exploited, the object under 
study must also be self-similar, i.e. the large-scale 
features must mirror the small-scale features, if only 
statistically. And indeed, in most natural fractals, this 
is the case. The shape of a limestone fragment will 
be closely related to the ridges of the mountainside 
where it broke off originally, which in turn will bear 

In this paper, we have set out to illustrate how 
fractal genesis can play an integral role in the 
field of machine learning. In effect, the duality 
and self-similarity offers a singleton value, which 
monotonically converges to the desired set of results. 
A synthesis of practical recommendations when using 
fractal dimensions on stochastic models in predicting 
the variances in the nearest neighborhood  typically 
concludes with  deterministic values. 

resemblance to the shape of the mountain range as  
a whole. 

Finding natural fractals is not difficult. Very few 
natural objects are smooth, and the human eye has 
no problem recognizing them as fractals. In the case 
of datasets used in machine learning, finding fractal 
structures is not as easy. Often these datasets are 
modelled on a Euclidean space of dimension greater 
than three, and some of them are not Euclidean at all, 
leaving us without our natural geometric intuition. 
The fractal structure may be there, but there is no 
simple way to visualize the dataset as a whole.  
We need to analyze various datasets to investigate 
their possible fractal structure. 

Let us focus on two aspects of AI that are still relatively 
new, that have not been exploited to the core and can yield 

immense benefits when leveraged

In addition to investigating these two aspects, we shall establish options for 
new algorithms that can exploit such fractal structures. 

Let’s assume that there are domains 
in machine learning that have an 

inherent fractal structure. 

Most commonly used machine learning 
algorithms (associated algorithms of neural 
networks) do not exploit this after structure.

1st 2nd
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HERE’S HOW
The fractal dimension is an interesting metrics 
because it is supposed to quantify by a single value, 
scale independence and roughness of ecological 
objects. However, in the following scenario, we will 
show that those two properties may be quantified by 
a single dimension only in some specific cases.  
In general, a non-integer quantifies only the 
roughness, and self-similarity needs to be evidenced 
or postulated by other means. Secondly, we revisited 

This means that, even if they represent the data in a narrow range of scales, they cannot do it on all scales, 
giving them an inherent limitation on how well they can model any fractal dataset.  While the scope of this 
document does not allow a complete and rigorous investigation of these claims, we have endeavored to 
provide some initial research into this relatively unexplored area of machine learning. 

The geometric objects that popular algorithms use to 
represent their hypotheses are 

always linear in nature. 

some aspects of the practical estimation of fractal 
dimensions, and have proposed a simplification of 
its estimation for 2D fields and discuss its possible 
relationship with self-similarity.

Our second assumption is that when this 
fractal structure and self-similarity exists, most 
commonly used machine learning algorithms 
cannot exploit it. 
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TYPES OF
NETWORKS 

FRACTAL
ARCHITECTURE

There are many different types of networks that assist in machine learning and can be modified to address the 
problem of training and recognition solutions.

Convolutional neural networks (CNNs) have become a dominant machine learning approach for visual 
object recognition. Despite their introduction more than 20 years ago, improvements in computer hardware 
and network structure have enabled the training of truly deep CNNs only recently. The original LeNet5 
consisted of 5 layers, VGG featured 19, and only last year Highway Networks and Residual Networks 
(ResNets) have surpassed the 100-layer barrier.

As CNNs become increasingly deep, a new 
challenge arises. As information about the input or 
gradient passes through many layers, it can vanish 
and “washout” by the time it reaches the end (or 
beginning) of the network. Many recent publications 
address this and/or related problems. ResNets and 
Highway Networks bypass signals from one layer to 
the next via identity connections. Stochastic depth 
shortens ResNets by randomly dropping layers 
during training to allow better flow of information 
and gradient.

•  Feed-forward Fractal Network

•  Training Algorithm: Backpropagation

•  Convolutional Neural Network

•  Deep Belief Network

•  Parzen Probabilistic Neural Network

•  Stacked Auto-Encoders

•  Support Vector Neural Network

•  Three Layer Neural Network

Recent work has shown that convolutional 
networks can be substantially deeper, 
more accurate, and efficient to train if 
they contain shorter connections between 
layers close to the input and those close to 
the output. 
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In this paper, we embrace this observation and introduce the Fractal Network (FNET) that connects each 
layer to the other in a feed-forward fashion. While traditional convolutional networks or neural networks 
with L layers have L connections — one between each layer and its subsequent layer — our network has L(L+1) 
2 direct connections. The feature-maps of all preceding layers are used as inputs for each layer, and its own 
feature-maps are used as inputs into subsequent layers. 

In the image above, a simple expansion rule generates a fractal architecture with C intertwined columns on  
the left. The base case, f1pzq, has a single layer of the chosen type (e.g. convolutional) between input and 
output. On the right, you can see that deep convolutional networks periodically reduce spatial resolution via 
pooling. A fractal version uses fC as a building block between pooling layers. Stacking B such blocks yields a 
network whose total depth, measured in terms of convolution layers, is B _ 2C_1. This example has depth 
40 (B _ 5, C _ 4).
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Let’s look at the benefits of FNET over 
Neural Networks to understand this better:

An Artificial Fractal Network (AFN)
is specified by:

•   A Fractal network is chosen to simulate and 	
       model ANN (Artificial neural Network) with 	
       a number of neurons which are monotonically 	
       divergent.

•   Neurons in ANN tend to have fewer 		
       connections than biological neurons.

•   Each neuron in ANN receives a number 
       of inputs. 

•   An activation function is applied to these inputs 	
       which results in the activation level  (output 	
       value) of the neuron.

•   Knowledge about the learning task is given in 	
       the form of examples called training examples. 	
       These results are correlated by fractal nodes 	
       instead of possible neuron  structures.

•   A Fractal node (model): Information processing 	
       unit of the FN.

•   Architecture: A set of neurons and links which 	
       connects neurons where each link has a 		
       separate weight.

•   Learning algorithm: Used for training the FN 	
       by modifying the weights in order to model a 	
       particular learning task correctly on the training 	
       examples.

•   The aim is to obtain a FN that is trained and 	
       generalizes well, as well as behave correctly on 	
       new instances of the learning task.

7

•  Alleviates the vanishing-gradient problem 

•  Strengthens feature propagation 

•  Encourages feature reuse

•  Substantially reduces the number of parameters

Benefits of FNET
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DUALITY IN
SELF-SIMILAR SYNDROMES	

HYBRID
DESIGNS

DROP-PATH

FNETs repeatedly combine several parallel layer 
sequences with different number of convolutional 
blocks to obtain a large nominal depth, while 
maintaining many short paths in the network. 

In fractal networks, simplicity of training mirrors its 
simplicity of design. A single loss, attached to the final 
layer, suffices to drive internal behavior mimicking 
deep supervision. Parameters are randomly overall 
depth, making them deep enough and training will 
carve out a useful assembly of subnetworks.  
The entirety of emergent behavior resulting from 
a fractal design may erode the need for recent 

Drop-path includes a regularization strategy and 
provides means of optionally imparting fractal 
networks with anytime behavior. A particular 
schedule of dropped paths during learning prevents 
subnetworks of different depths from co-adapting.  
As a consequence, both shallow and deep 
subnetworks must individually produce the correct 
output. In this section, we will elaborate upon the 
technical details of fractal networks and drop-path 
through experimental comparisons to residual 
networks across datasets. 

Drop-path regularization forces each input to a join 
to be individually reliable. This reduces the reward 
for even implicitly learning to allocate part of one 
signal to act as a residual for another.
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Although these different approaches vary in network 
topology and training procedures, they share a key 
characteristic in that they create short paths from 
early layers to later duality in self-similar syndromes.

engineering tricks intended to achieve similar effects. 
These tricks include residual functional forms with 
identity initialization, manual supervision, hand-
crafted architectural modules, and student-teacher 
training regimes. Hybrid designs could certainly 
integrate any of them with a fractal architecture with 
an open-ended question about the degree to which 
such hybrids are synergistic.

Experiments show that we can extract high-
performance subnetworks consisting of a single 
column. This type of a subnetwork is effectively 
devoid of joins, as only a single path is active 
throughout. They do not produce any signals to which 
a residual could be added. Together, these properties 
ensure that join layers are not an alternative method 
of residual learning.

Dropout and drop-connect modify interactions 
between sequential network layers in order to 
discourage co-adaptation. Since fractal networks 
contain an additional macro-scale structure, we 
propose to complement these techniques with an 
analogous coarse-scale regularization scheme.
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Just as dropout prevents co-adaptation of activations, drop-path prevents co-adaptation of parallel paths by 
randomly dropping operands of the join layers. This discourages the network from using one input path as an 
anchor and another as a corrective term (configuration that, if not prevented, is prone to over-fitting). 

A fractal network block functions with some 
connections between layers disabled, as long as some 
path from the input to the output is still available. 
Drop-path guarantees at least one such path while 
sampling a subnetwork with many other paths 
disabled. During training, presenting a different 
active subnetwork to each mini-batch prevents  
co-adaptation of parallel paths. 

A global sampling strategy returns a single column 
as a subnetwork. Alternating it with local sampling 
encourages the development of individual columns 
as performant stand-alone subnetworks. As with 
dropout, signals may need appropriate rescaling. 
With element-wise means, this is trivial; each join 
computes the mean of its active inputs only.

For example, we can train with dropout and a mixture 
model of 50% local and 50% global sampling or 

BLOCK
FUNCTIONS
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drop-path. We sample a new subnetwork each 
mini-batch. With sufficient memory, we can 
simultaneously evaluate one local sample and all 
global samples for each mini-batch by maintaining 
separate networks and tying them together via 
weight sharing.

While fractal connectivity permits the use of paths of 
any length, global drop-path forces the use of many 
paths whose lengths differ by orders of magnitude 
(powers of 2). Therefore, the subnetworks sampled 
by drop-path exhibit large structural diversity.  
This property stands in contrast to stochastic  
depth regularization of residual network, which, by 
virtue of using a fixed drop probability for each layer 
in a chain, samples subnetworks with a concentrated 
depth distribution.

•  Local: A join drops each input with fixed probability, but we make sure at least 		
      one survives.

•  Global: A single path is selected for the entire network. We restrict this path 		
      to a single column, thereby promoting individual columns as independently 		
      strong predictors.

Consider two sampling strategies
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TOPOLOGICAL MAPPING 
AND DEPLOYMENT
Demystify the relationship between action taken, data massaged (data cleaned/scrubbed), and the process 
through which the journey of data occurs. Here’s how a topology model can be deployed and how the
Same-Model Topology Processing algorithm can detoxify the bond between the massaged data, business 
rules, and the associated process.

PROCESS FLOW

Time spent

Time spent

Time spent

Time spent

Replying to an
email which
just arrived

Open Workflow and 
cked up a file to 

process

Open EXCEL file 
started modifiying 

data

Open Workflow 
and picked up a 

file to process 

Reading emails

Associated 
application is SAP

Associated 
application is SAP

Associated 
application is EXCEL

Associated 
application is Outlook

Associated 
application is Outlook

Know Facts:

Time spent
Application chosen
Data Dealt with 
Idle Time 
Modified Data 
Data destination

Correlated Info

Associated application
Response matrix
Prcess sequence
Inherited propertied

Unknown 

Modified data
Journey of data 
Random process movements 

Discrete Information

Business Rules written
Bussiness Rules not written
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Trader Contact

Market Data Provider

<<user>>

<<user>>

<<user>>

<<user>>

<<extends>>
<<extends>>

<<extends>>

<<user>>

<<user>>

Trader

Generate contract

Distribute internal
news

Distribute ticker
prices

Trade Commodities

Distribute trade
newsDistribute news

Distribute market
news

Analyze potential
trade

Distribute closing
prices

TOPOLOGY
MAPPING
Users often execute their tasks randomly, while depending on the availability of data, resources and their 
priorities. Though these appear random, there is a pattern at intervals, which repeats recursively either 
linearly or non-linearly. In order to map such occurrences and find the shortest or optimized path, a virtual 
topology can be crafted to represent the actions and associated impacts as shown in the figure above.



© 2017 AntWorks. Strictly private and confidential. No part of this document may be reproduced or distributed without prior permission of AntWorks.12

During the process of spatial information collection, some inevitable problems may occur, such as the double 
emergency of the same node or line, emergencies of features, intersection and leaking polygon during 
the collection process of neighboring facial geometry objects of the nodes typically their properties, their 
availabilities and so on. Therefore, a topological process is needed to deal with these redundancies and errors.

Whilst following a simple connectivity rule, FNET naturally integrates the properties of identity mappings, 
deep supervision, and diversified depth. They allow feature reuse throughout the networks and can 
consequently learn more compact and accurate models. Because of their compact internal representations 
and reduced feature redundancy, FNET can be leveraged as feature extractors for various computer vision 
tasks that build on convolutional features. Going forward, it will be interesting to study such feature transfers 
with FNET.

A virtual topology represents the way that processes 
communicate and their corresponding nodal points. 

Nearest neighbor 
exchange in a mesh

Recursive doubling in an
all-to-all exchange
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ROADMAP FOR
THE WAY AHEAD
While many organization consider leveraging ‘fractal’ 
dimensions of a dataset as a good approximation of 
its intrinsic dimension, and to drop attributes that do 
not affect it, we have applied our method to real and 
synthetic datasets which produced accurate results 
with amazing speed, efficiency and clarity. 

As an AI product company, AntWorks has helped 
many clients run their businesses leveraging our 
integrated stack of Cognitive Machine Reading, RPA 
and  actionable Insights technologies. The ANTStein 
platform from AntWorks enables users to integrate 
AI into their business processes for data  ingestion  
and harnessing actionable insights to drive faster, 
more accurate,  intelligent automation.

•  No rotation of attributes, thus leading to easier interpretation 

     of the resulting attributes

•  Ability to identify attributes that have nonlinear correlations

•  Constant number of passes over the dataset

•  Accurate estimate on how many attributes we should keep

ANTStein uses fractal networks to discern patterns, 
equipping it with superior machine learning abilities.  
While learning, the platform exhibits scale invariance 
where it can retain the self-similar resonating 
properties of shape while removing the dependence 
on scale dimension, making adaptive learning much 
easier with ANTStein. While it gets progressively 
accurate over time (it requires far smaller sample sets 
to learn from), training cycle times are reduced which 
result in far smaller infrastructure requirements. 

ANTStein has achieved state-of-the-art results across 
several highly competitive datasets. 

Leveraging FNET for ANTStein introduces direct connections between any two layers with the same
feature-map size. With ANTStein we can show that FNET scales naturally to hundreds of layers, while 
exhibiting no optimization difficulties. In our experiments, FNET tends to yield consistent improvement in 
accuracy with growing number of parameters without any signs of performance degradation or overfitting. 
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