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What is the common thread between children

in a playpen, trainees on their first day at work
and a clueless person at a bank kiosk? It may not
be obvious at first but their circumstances are
remarkably similar. Unaware, afraid to ask and
eager to learn, all three scenarios are perfect
examples of how cognitive thinking helps us all
grasp an idea, learn through observation and
emulate it in our own ways. Cognitive thinking

is the exact theory that artificial intelligence (Al)
is based on. No, Al is not a new mantra or trend.
After all, it has been around for the last 50 years
or so, but never has it been as acclaimed as it has
been since the last 2 years. With the increased
investments in infrastructure and automation,
everyone is realising that the Al band wagon has
much more to offer than big data and analytics.

ANTWORKS"

Today we are using cognitive thinking to

help bots read, learn, contextualize , infer

and automate front-, middle- and back office
processes across industries. Learning through
cognitive thinking is quickly becoming the
preferred way to shape organizations, industries
and customer experiences. With endless
opportunities in real-life business applications,
Al is the inevitable omnipresent, bursting
forth with promises of the next wave in
technology innovation.

However, as leaders look to get their questions
answered and prepare a roadmap to integrate
Al in their existing business processes, they are
keen to understand how these cognitive skills
can be leveraged for real world enterprises

Some frequently asked questions include:

Based on a set of steps executed by users, can machine learning algorithms
monitor and arrive at patterns? While these steps are very different
between users, will they have the same outcomes?

Is process reengineering a mandatory precursor to automation?
How can we derive insights faster or more efficiently?

Can we unlock hidden correlations between data elements without

specifically querying for it?

Is there a method or approach to automatically read and infer the context

with a machine?

Can we combine one or a set of algorithms to create a net that will
orchestrate and form a decision matrix based on the cognitive ability

gained by the very influx of data?

Will these algorithms predict future patterns based on the historic trend of
data and take actions proactively (self-heal)?
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Most cognitive computing and machine learning
solutions use neural science as a foundation.

Neural science is based on the premise that each
neuron carries identical information. Recent studies
show that fractals hold great promise when it comes
to cognitive learning. Fractal science is based on the
premise that networks of neurons carry similar but
not identical signals about patterns, while neural
networks read absolute data.
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In this paper, we have set out to illustrate how
fractal genesis can play an integral role in the

field of machine learning. In effect, the duality

and self-similarity offers a singleton value, which
monotonically converges to the desired set of results.
A synthesis of practical recommendations when using
fractal dimensions on stochastic models in predicting
the variances in the nearest neighborhood typically
concludes with deterministic values.

Let us focus on two aspects of Al that are still relatively
new, that have not been exploited to the core and can yield
immense benefits when leveraged

Let's assume that there are domains
in machine learning that have an
inherent fractal structure.

Most commonly used machine learning
algorithms (associated algorithms of neural
networks) do not exploit this after structure.

In addition to investigating these two aspects, we shall establish options for
new algorithms that can exploit such fractal structures.

The first assumption suggests that in various learning
tasks the dataset (the input from which we wish

to learn) contains fractal characteristics. Broadly
speaking, there are details at all scales. When you
zoom in, even slightly, the data reveals a non-smooth
structure. This lack of smoothness can be seen
naturally in phenomena such as clouds, coastlines,
mountain ranges, and the crests of waves.

If this detail is to be exploited, the object under
study must also be self-similar, i.e. the large-scale
features must mirror the small-scale features, if only
statistically. And indeed, in most natural fractals, this
is the case. The shape of a limestone fragment will
be closely related to the ridges of the mountainside
where it broke off originally, which in turn will bear

resemblance to the shape of the mountain range as
a whole.

Finding natural fractals is not difficult. Very few
natural objects are smooth, and the human eye has
no problem recognizing them as fractals. In the case
of datasets used in machine learning, finding fractal
structures is not as easy. Often these datasets are
modelled on a Euclidean space of dimension greater
than three, and some of them are not Euclidean at all,
leaving us without our natural geometric intuition.
The fractal structure may be there, but there is no
simple way to visualize the dataset as a whole.

We need to analyze various datasets to investigate
their possible fractal structure.
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The fractal dimension is an interesting metrics some aspects of the practical estimation of fractal
because it is supposed to quantify by a single value, dimensions, and have proposed a simplification of
scale independence and roughness of ecological its estimation for 2D fields and discuss its possible
objects. However, in the following scenario, we will relationship with self-similarity.

show that those two properties may be quantified by
a single dimension only in some specific cases.

In general, a non-integer quantifies only the
roughness, and self-similarity needs to be evidenced
or postulated by other means. Secondly, we revisited

Our second assumption is that when this
fractal structure and self-similarity exists, most
commonly used machine learning algorithms
cannot exploit it.

The geometric objects that popular algorithms use to

represent their hypotheses are
always linear in nature.

This means that, even if they represent the data in a narrow range of scales, they cannot do it on all scales,
giving them an inherent limitation on how well they can model any fractal dataset. While the scope of this
document does not allow a complete and rigorous investigation of these claims, we have endeavored to
provide some initial research into this relatively unexplored area of machine learning.
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There are many different types of networks that assist in machine learning and can be modified to address the
problem of training and recognition solutions.

Feed-forward Fractal Network
Training Algorithm: Backpropagation
Convolutional Neural Network
Deep Belief Network

Parzen Probabilistic Neural Network
Stacked Auto-Encoders

Support Vector Neural Network

Three Layer Neural Network

have become a dominant machine learning approach for visual
object recognition. Despite their introduction more than 20 years ago, improvements in computer hardware
and network structure have enabled the training of truly deep CNNs only recently. The original LeNet5
consisted of 5 layers, VGG featured 19, and only last year Highway Networks and Residual Networks
(ResNets) have surpassed the 100-layer barrier.

As CNNs become increasingly deep, a new
challenge arises. As information about the input or
gradient passes through many layers, it can vanish
and “washout” by the time it reaches the end (or
beginning) of the network. Many recent publications
address this and/or related problems. ResNets and
Highway Networks bypass signals from one layer to
the next via identity connections. Stochastic depth
shortens ResNets by randomly dropping layers
during training to allow better flow of information
and gradient.
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In this paper, we embrace this observation and introduce the Fractal Network (FNET) that connects each
layer to the other in a feed-forward fashion. While traditional convolutional networks or neural networks
with L layers have L connections — one between each layer and its subsequent layer — our network has L(L+1)
2 direct connections. The feature-maps of all preceding layers are used as inputs for each layer, and its own
feature-maps are used as inputs into subsequent layers.

Fractal Expansion Rule
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In the image above, a simple expansion rule generates a fractal architecture with C intertwined columns on
the left. The base case, f1pzq, has a single layer of the chosen type (e.g. convolutional) between input and
output. On the right, you can see that deep convolutional networks periodically reduce spatial resolution via
pooling. A fractal version uses fC as a building block between pooling layers. Stacking B such blocks yields a
network whose total depth, measured in terms of convolution layers, is B _ 2C_1. This example has depth
40(B_5,C_4).
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A Fractal network is chosen to simulate and
model ANN (Artificial neural Network) with

a number of neurons which are monotonically
divergent.

Neurons in ANN tend to have fewer
connections than biological neurons.

Each neuron in ANN receives a number
of inputs.

An activation function is applied to these inputs
which results in the activation level (output
value) of the neuron.

Knowledge about the learning task is given in
the form of examples called training examples.
These results are correlated by fractal nodes
instead of possible neuron structures.

Benefits of FNET
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A Fractal node (model): Information processing
unit of the FN.

Architecture: A set of neurons and links which
connects neurons where each link has a
separate weight.

Learning algorithm: Used for training the FN

by modifying the weights in order to model a
particular learning task correctly on the training
examples.

The aim is to obtain a FN that is trained and
generalizes well, as well as behave correctly on
new instances of the learning task.

Alleviates the vanishing-gradient problem

Strengthens feature propagation

Encourages feature reuse

Substantially reduces the number of parameters
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FNETs repeatedly combine several parallel layer
sequences with different number of convolutional
blocks to obtain a large nominal depth, while
maintaining many short paths in the network.

In fractal networks, simplicity of training mirrors its
simplicity of design. A single loss, attached to the final
layer, suffices to drive internal behavior mimicking
deep supervision. Parameters are randomly overall
depth, making them deep enough and training will
carve out a useful assembly of subnetworks.

The entirety of emergent behavior resulting from

a fractal design may erode the need for recent

Drop-path includes a regularization strategy and
provides means of optionally imparting fractal
networks with anytime behavior. A particular
schedule of dropped paths during learning prevents
subnetworks of different depths from co-adapting.
As a consequence, both shallow and deep
subnetworks must individually produce the correct
output. In this section, we will elaborate upon the
technical details of fractal networks and drop-path
through experimental comparisons to residual
networks across datasets.

Drop-path regularization forces each input to a join
to be individually reliable. This reduces the reward
for even implicitly learning to allocate part of one
signal to act as a residual for another.
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Although these different approaches vary in network
topology and training procedures, they share a key
characteristic in that they create short paths from
early layers to later duality in self-similar syndromes.

engineering tricks intended to achieve similar effects.
These tricks include residual functional forms with
identity initialization, manual supervision, hand-
crafted architectural modules, and student-teacher
training regimes. Hybrid designs could certainly
integrate any of them with a fractal architecture with
an open-ended question about the degree to which
such hybrids are synergistic.

Experiments show that we can extract high-
performance subnetworks consisting of a single
column. This type of a subnetwork is effectively
devoid of joins, as only a single path is active
throughout. They do not produce any signals to which
a residual could be added. Together, these properties
ensure that join layers are not an alternative method
of residual learning.

Dropout and drop-connect modify interactions
between sequential network layers in order to
discourage co-adaptation. Since fractal networks
contain an additional macro-scale structure, we
propose to complement these techniques with an
analogous coarse-scale regularization scheme.
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Just as dropout prevents co-adaptation of activations, drop-path prevents co-adaptation of parallel paths by
randomly dropping operands of the join layers. This discourages the network from using one input path as an
anchor and another as a corrective term (configuration that, if not prevented, is prone to over-fitting).

Consider two sampling strategies

e |ocal: Ajoin drops each input with fixed probability, but we make sure at least

one survives.

e Global: A single path is selected for the entire network. We restrict this path
to a single column, thereby promoting individual columns as independently
strong predictors.

A fractal network block functions with some
connections between layers disabled, as long as some
path from the input to the output is still available.
Drop-path guarantees at least one such path while
sampling a subnetwork with many other paths
disabled. During training, presenting a different
active subnetwork to each mini-batch prevents
co-adaptation of parallel paths.

A global sampling strategy returns a single column
as a subnetwork. Alternating it with local sampling
encourages the development of individual columns
as performant stand-alone subnetworks. As with
dropout, signals may need appropriate rescaling.
With element-wise means, this is trivial; each join
computes the mean of its active inputs only.

For example, we can train with dropout and a mixture
model of 50% local and 50% global sampling or

drop-path. We sample a new subnetwork each
mini-batch. With sufficient memory, we can
simultaneously evaluate one local sample and all
global samples for each mini-batch by maintaining
separate networks and tying them together via
weight sharing.

While fractal connectivity permits the use of paths of
any length, global drop-path forces the use of many
paths whose lengths differ by orders of magnitude
(powers of 2). Therefore, the subnetworks sampled
by drop-path exhibit large structural diversity.

This property stands in contrast to stochastic

depth regularization of residual network, which, by
virtue of using a fixed drop probability for each layer
in a chain, samples subnetworks with a concentrated
depth distribution.
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Demystify the relationship between action taken, data massaged (data cleaned/scrubbed), and the process
through which the journey of data occurs. Here's how a topology model can be deployed and how the
Same-Model Topology Processing algorithm can detoxify the bond between the massaged data, business
rules, and the associated process.
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Users often execute their tasks randomly, while depending on the availability of data, resources and their
priorities. Though these appear random, there is a pattern at intervals, which repeats recursively either
linearly or non-linearly. In order to map such occurrences and find the shortest or optimized path, a virtual
topology can be crafted to represent the actions and associated impacts as shown in the figure above.
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A virtual topology represents the way that processes
communicate and their corresponding nodal points.

Nearest neighbor Recursive doubling in an
exchange in a mesh all-to-all exchange

During the process of spatial information collection, some inevitable problems may occur, such as the double
emergency of the same node or line, emergencies of features, intersection and leaking polygon during

the collection process of neighboring facial geometry objects of the nodes typically their properties, their
availabilities and so on. Therefore, a topological process is needed to deal with these redundancies and errors.

Whilst following a simple connectivity rule, FNET naturally integrates the properties of identity mappings,
deep supervision, and diversified depth. They allow feature reuse throughout the networks and can
consequently learn more compact and accurate models. Because of their compact internal representations
and reduced feature redundancy, FNET can be leveraged as feature extractors for various computer vision
tasks that build on convolutional features. Going forward, it will be interesting to study such feature transfers
with FNET.
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While many organization consider leveraging ‘fractal’
dimensions of a dataset as a good approximation of
its intrinsic dimension, and to drop attributes that do
not affect it, we have applied our method to real and
synthetic datasets which produced accurate results
with amazing speed, efficiency and clarity.

As an Al product company, AntWorks has helped
many clients run their businesses leveraging our
integrated stack of Cognitive Machine Reading, RPA
and actionable Insights technologies. The ANTStein
platform from AntWorks enables users to integrate
Al into their business processes for data ingestion
and harnessing actionable insights to drive faster,
more accurate, intelligent automation.
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ANTStein uses fractal networks to discern patterns,
equipping it with superior machine learning abilities.
While learning, the platform exhibits scale invariance
where it can retain the self-similar resonating
properties of shape while removing the dependence
on scale dimension, making adaptive learning much
easier with ANTStein. While it gets progressively
accurate over time (it requires far smaller sample sets
to learn from), training cycle times are reduced which
result in far smaller infrastructure requirements.

ANTStein has achieved state-of-the-art results across
several highly competitive datasets.

No rotation of attributes, thus leading to easier interpretation

of the resulting attributes

Ability to identify attributes that have nonlinear correlations

Constant number of passes over the dataset

Accurate estimate on how many attributes we should keep

Leveraging FNET for ANTStein introduces direct connections between any two layers with the same
feature-map size. With ANTStein we can show that FNET scales naturally to hundreds of layers, while
exhibiting no optimization difficulties. In our experiments, FNET tends to yield consistent improvement in
accuracy with growing number of parameters without any signs of performance degradation or overfitting.
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Dr. Venkatanathan Dwarkanathan is an accomplished Mathematician with active engagement in
research on topics like Chaos theory, fractal based pattern recognition and several others in applied
mathematics, including dyna-systems theory, Fractal compositions and geophysical

image dynamics.

Prior to joining Antworks, Dr. Venkatanathan Dwarkanathan held a broad range of leadership
positions in mission critical portfolios in large organizations like National Aeronautics and Space
Administration, Boeing, Aetna, Ausys Automation, Maples and iData Sciences.

He holds a Ph.D. degree in Mathematics (Astro-pad dynamics) and a post-doctoral work in Fractal
Topology with profound expertise in building software frameworks which generates math models
for applications in various verticals.

During the past 25+ years, he has developed many theories and built models for different verticals
including; Aerospace (Image Sequencing), Roadways (Crack detection in JPEG images),Market
Intelligence (Fractal Genesis), Healthcare (Mathematical Models for payers) and generic Data
Capture Framework using Content Based Object Retrieval Methods
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