McKinsey Survey of 3,000 Executives Reveals How Businesses Succeed with AI

301
Key to success

The buzz over artificial intelligence (AI) has grown loud enough to penetrate the C-suites of organizations around the world, and for good reason. Investment in AI is growing and is increasingly coming from organizations outside the tech space. And AI success stories are becoming more numerous and diverse, from Amazon reaping operational efficiencies using its AI-powered Kiva warehouse robots, to GE keeping its industrial equipment running by leveraging AI for predictive maintenance.

While it’s clear that CEOs need to consider AI’s business implications, the technology’s nascence in business settings makes it less clear how to profitably employ it. Through a study of AI that included a survey of 3,073 executives and 160 case studies across 14 sectors and 10 countries, and through a separate digital research program, we have identified 10 key insights CEOs need to know to embark on a successful AI journey.

Don’t believe the hype: Not every business is using AI… yet. While investment in AI is heating up, corporate adoption of AI technologies is still lagging. Total investment (internal and external) in AI reached somewhere in the range of $26 billion to $39 billion in 2016, with external investment tripling since 2013. Despite this level of investment, however, AI adoption is in its infancy, with just 20% of our survey respondents using one or more AI technologies at scale or in a core part of their business, and only half of those using three or more. (Our results are weighted to reflect the relative economic importance of firms of different sizes. We include five categories of AI technology systems: robotics and autonomous vehicles, computer vision, language, virtual agents, and machine learning.)

For the moment, this is good news for those companies still experimenting or piloting AI (41%). Our results suggest there’s still time to climb the learning curve and compete using AI.

However, we are likely at a key inflection point of AI adoption. AI technologies like neural-based machine learning and natural language processing are beginning to mature and prove their value, quickly becoming centerpieces of AI technology suites among adopters. And we expect at least a portion of current AI pilots to fully integrate AI in the near term. Finally, adoption appears poised to spread, albeit at different rates, across sectors and domains. Telecom and financial services are poised to lead the way, with respondents in these sectors planning to increase their AI tech spend by more than 15% a year — seven percentage points higher than the cross-industry average — in the next three years.

Read the source article at Harvard Business Review.