Your Company’s Data Has Value; Here is How to Find It

1333

Companies are amassing tremendous volumes of data, which they consider their greatest asset, or at least one of their greatest assets. Yet, few business leaders can articulate what their company’s data is worth.

Successful data-driven digital natives understand the value of their data and their valuations depend on sound applications of that data. Increasingly venture capitalists, financial analysts and board members will expect startup, public company and other organizational leaders to explain the value of their data in terms of opportunities, top-line growth, bottom line improvement and risks.

For example, venture capital firm Mercury Fund recently analyzed SaaS startup valuations based on market data that its team has observed. According to Managing Director Aziz Gilani, the team confirmed that SaaS company valuations, which range from 5x to 11x revenue, depend on the underlying metrics of the company. The variable that determines whether those companies land in the top or bottom half of the spectrum is the company’s annual recurring revenue (ARR) growth rate, which reflects how well a company understands its customers.

Mercury Fund’s most successful companies scrutinize their unit economics “under a microscope” to optimize customer interactions in a capital-efficient manner and maximize their revenue growth rates.

For other companies, the calculus is not so straightforward and, in fact, it’s very complicated.

Direct value

When business leaders and managers ponder the value of data, their first thought is direct monetization which means selling data they have.

“[I]t’s a question of the holy grail because we know we have a lot of data,” said David Schatsky, managing director at Deloitte. “[The first thought is] let’s go off and monetize it, but they have to ask themselves the fundamental questions right now of how they’re going to use it: How much data do they have? Can they get at it? And, can they use it in the way they have in mind?”

Data-driven digital natives have a better handle on the value of their data than the typical enterprise because their business models depend on collecting data, analyzing that data and then monetizing it. Usually, considerable testing is involved to understand the market’s perception of value, although a shortcut is to observe how similar companies are pricing their data.

“As best as I can tell, there’s no manual on how to value data but there are indirect methods. For example, if you’re doing deep learning and you need labeled training data, you might go to a company like CrowdFlower and they’d create the labeled dataset and then you’d get some idea of how much that type of data is worth,” said Ben Lorica, chief data officer at O’Reilly Media. “The other thing to look at is the valuation of startups that are valued highly because of their data.”

Observation can be especially misleading for those who fail to consider the differences between their organization and the organizations they’re observing. The business models may differ, the audiences may differ, and the amount of data the organization has and the usefulness of that data may differ. Yet, a common mistake is to assume that because Facebook or Amazon did something, what they did is a generally-applicable template for success.

However, there’s no one magic formula for valuing data because not all data is equally valuable, usable or available.

“The first thing I look at is the data [a client has] that could be turned into data-as-a-service and if they did that, what is the opportunity the value [offers] for that business,” said Sanjay Srivastava, chief digital officer at global professional services firm Genpact.

Read the source article at InformationWeek.com.